Case Study

SolidRusT AI Platform

Building a production AI inference platform serving multiple consumer applications with 99.9% uptime using Kubernetes, vLLM, and GitOps.

Duration
18 Months
Role
Founder & Lead Architect
Team Size
Solo + AI Assistants

The Challenge

As AI capabilities rapidly evolved, I recognized the need for a robust, self-hosted inference platform that could serve multiple consumer-facing applications. The challenge was building infrastructure that could handle variable workloads, provide low-latency responses, and maintain high availability - all while keeping costs manageable compared to cloud AI services.

Key challenges included:

The Solution

I designed and implemented a comprehensive AI platform built on Kubernetes, featuring a 12-node cluster with 5 GPU-equipped worker nodes. The architecture follows GitOps principles with FluxCD for continuous deployment and Kustomize for environment management.

┌─────────────────────────────────────────────────────────────────┐
│                     Public Internet                              │
└─────────────────────────┬───────────────────────────────────────┘
                          │
                          ▼
┌─────────────────────────────────────────────────────────────────┐
│                  Artemis Gateway (AWS EC2)                       │
│                  - TLS Termination                               │
│                  - Rate Limiting                                 │
│                  - API Key Validation                            │
└─────────────────────────┬───────────────────────────────────────┘
                          │
                          ▼
┌─────────────────────────────────────────────────────────────────┐
│               Kubernetes Cluster (12 nodes)                      │
├─────────────────────────────────────────────────────────────────┤
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────────────────┐  │
│  │   LiteLLM   │  │    vLLM     │  │    Data Layer API       │  │
│  │   Proxy     │──│  Inference  │  │  (RAG, Embeddings)      │  │
│  │  (Failover) │  │  (GPU Pods) │  │                         │  │
│  └─────────────┘  └─────────────┘  └─────────────────────────┘  │
├─────────────────────────────────────────────────────────────────┤
│  ┌─────────────────────────────────────────────────────────────┐│
│  │                    PAM Platform                              ││
│  │           (API Keys, Billing, User Auth)                     ││
│  └─────────────────────────────────────────────────────────────┘│
└─────────────────────────────────────────────────────────────────┘
                

Key Components

Technology Stack

Kubernetes FluxCD vLLM LiteLLM Python FastAPI PostgreSQL Valkey Nginx Prometheus Grafana Stripe API

Results

99.9%
Uptime Achieved
<200ms
Avg Response Time
5
Consumer Apps Served
90%
Cost Reduction vs Cloud

Key Learnings

Building this platform provided invaluable experience in production ML infrastructure. The most important lessons learned:

"The platform now handles inference for five consumer applications including AI chat interfaces, game assistants, and multi-agent deliberation systems - all from the same underlying infrastructure."

Back to Case Studies